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Legal doctrine of Disparate Impact is born...
● The Curious Case of Griggs v. Duke Power Co.

○ Claim: Discrimination against African-American employees in violation of Title VII of Act
■ Title VII of the Act: Prohibits discrimination based on race, color, religion, sex, or national origin

○ Transfer Policy:
■ Mechanical Test
■ IQ Test
■ Highschool Diploma

○ Setting: North Carolina, 1960s
■ Highschool Diploma: 34% White v. 18% Black
■ Aptitude Tests: 58% White v. 6% Black

○ District Courts Verdict: Claim dismissed!
○ Supreme Court’s Verdict: Hiring decision illegal if it resulted in disparate impact by a sensitive 

attribute even if not explicitly determined based on it.
■ Duke Power Co. Guilty!
■ Findings: Requirements were to safeguard Duke's long-standing policy of giving job 

preferences to its white employees.



Disparate Impact Effect
● Disparate Impact v. Disparate Treatment

○ Unintended Discrimination

● Not always illegal!
● Disparate Impact Effect Today 
● 80% Rule: Advocated by US Equal Employment Opportunity Commission
● Main Goal: A mathematical definition of Disparate Impact based on 80% Rule



Contributions
● Introducing the problem to Computer Science world

○ Introducing 80% rule of EEOC as a loss function
○ Showing any decision exhibiting Disparate Impact (DI) can be converted into one where the 

sensitive attribute leaks

● Certifying lack of DI on a dataset 
○ Suggesting a regression algorithm which minimizes the error metric defined in the problem

● Transforming input dataset in a way that:
○ Predictability of the protected attribute is impossible
○ Preserving closeness to the original data distribution

● Detailed empirical study showing effectiveness of the approach



Disparate Impact Mathematical Definition
● Dataset D=(X, Y, C):

○ X: Protected attribute for example race, sex, religion, etc.
○ Y: Remaining attributes
○ C: Binary class to be predicted for example “will hire”

● D has Disparate Impact if:

For positive outcome class “C=YES” and majority protected group “X=1”



Disparate Impact and Error Rates
● Let’s reinterpret 80% rule in terms of more standard statistical measures of 

quality of a classifier: 
● Can’t use Accuracy!
● Class-Conditioned Error Metrics

○ Sensitivity a.k.a True Positive Rate: 

○ Specificity a.k.a True Negative Rate:

● Likelihood Ratio Positive: 

● A data set has Disparate Impact if: 

● Disparate Impact: 



Computational Fairness
● Alice, an employer, uses algorithm A to decide who to hire. A takes data set D 

with protected attribute X and unprotected attributes Y and makes a binary 
decision C. By law, Alice is not allowed to use X in making decisions, and 
claims to use only Y. It is Bob’s job to verify that on the data D, Alice’s 
algorithm A is not liable for a claim of disparate impact.

● Assumptions:
○ Bob has no access to algorithm A.
○ Alice has good intentions.

● Idea: If Bob cannot predict X given Y, A is fair on D.



Predictability and Disparate Impact
● Basis: Procedure that predicts X from Y
● We want to measure the quality of this predictor with two constraints:

○ Optimizable using standard predictors in ML: LR+ fails!
○ Relatable to LR+: Accuracy fails!

● A new error measure: Balanced Error Rate (BER)
○ Definition: Let f : Y → X be a predictor of X from Y. BER of f on D over the pair (X, Y) is 

defined as the (unweighted) average class-conditioned error of f.

● Predictability
○ Definition: X is ε-predictable from Y if there exists a function f : Y → X such that:



Predictability and Disparate Impact
● ε-Fairness

○ Definition: D = (X, Y, C) is ε-fair                                if for any classification algorithm f : Y → X

● Theorem: A data set is (1/2−β/8)-predictable iff it admits disparate impact, 
where β is the fraction of elements in the minority class (X = 0) that are 
selected (C = 1).

● Proof of Theorem
○ Disparate Impact→Predictability
○ Predictability→Disparate Impact



Proof: Disparate Impact→Predictability
Suppose there exists some function g:Y→C such that LR+(g(y), c)≥1/τ. 
We will create a function ψ:C→X such that BER(ψ(g(y)), x)<ε for (x,y)∈D. Thus the combined predictor 
ψ◦g satisfies the definition of predictability. 
Consider the confusion matrix associated with g. Set α= b/(b+d) and β= c/(a+c). Then we have:

●  LR+(g(y), X)= (1-α)/β 
● DI(g)= β/(1-α)

We define the purely biased mapping ψ:C→X as ψ(YES)=1 and ψ(NO)=0. Finally, let φ:Y→X=ψ◦g.
Confusion matrix for φ is identical to the matrix for g and BER(φ)=(α+β)/2 in terms of this matrix.



Proof: Disparate Impact→Predictability
We can now express contours of the DI and BER functions as curves in the unit square [0,1]2. 
Reparameterizing π1=1−α and π0=β we can express the error measures:

● DI(g) = π0/π1 → Any classifier g with DI(g)=δ can be represented in the [0,1]2 as the line π1=π0/δ.
● BER(φ)= (1+π0−π1)/2 → Any classifier φ with BER(φ)=ε can be written as the π1=π0+1−2ε.

Let us now fix the desired DI threshold τ, corresponding to the line π1 =π0/τ. Notice that the region {(π0,
π1) | π1≥π0/τ} is the region where one would make a finding of disparate impact (for τ=0.8).

Now given a classification that admits a finding of disparate impact, we can compute β. 
Consider the point (β, β/τ) at which the line π0=β intersects the DI curve π1=π0/τ. This point lies on the 
BER contour (1+β− β/τ)/2=ε, yielding ε=1/2−β(1/τ − 1)/2 in particular for the DI threshold of τ=0.8, the 
desired BER threshold is: ε=1/2-β/8



Proof: Predictability→Disparate Impact
Suppose there is a function f:Y→X such that BER(f(y),x) ≤ ε. 
Let ψ−1:X→ C be the inverse purely biased mapping i.e. ψ−1(1)=YES and ψ−1(0)=NO.
Let g:Y→C=ψ−1◦f. This gives us π1≥1+π0−2ε and therefore:

Recall that DI(g)=π0/π1 and π0=β yields:

For τ=0.8 this gives us BER threshold of: ε=1/2-β/8



A Few Observations
● As ε approaches ½ (β tends to 0) the bound tends towards the trivial which introduces a line of 

attack to evade DI finding:
○ When a company is under investigation for discriminatory hiring practices, it can defeat such a finding by 

interviewing (but not hiring) a large proportion of applicants from the protected class. This effectively drives β 
down, and the observation above says that in this setting their discriminatory practices will be harder to detect, 
because our result can not guarantee that a classifier will have error significantly less than 0.5.

● Uncertainty due to β: In practice we only know that the true value of β lies in a range [βl, βu]. Since 
the BER threshold varies monotonically with β, we can merely use βl to obtain a conservative 
estimate.

● Uncertainty due to BER estimate: Suppose that our classifier yields an error that lies in a range [γ,
γ′ ]. Again, because of monotonicity, we will obtain an interval of values [τ, τ′] for DI.



Certifying Lack of DI
● Goal: Check whether there is insufficient information to detect a protected attribute from data.
● Algorithm: 

○ We run a classifier that optimizes BER on the given data set, attempting to predict the X from Y. Suppose the 
error in this prediction is ε.

○ Using the estimate of β from the data, we can substitute this into the equation ε=1/2-β/8 and obtain a 
threshold ε′.

○ If ε′<ε then data set is free from disparate impact.



Some Math Review
● Cumulative Distribution Function (CDF)

○ Probabilities of X being smaller than or equal to some value x: FX(x)=Pr(X≤x)=p
○ This function takes as input x and returns values from the [0,1] denoted as p. 

● Quantile Function
○ The inverse of the cumulative distribution function tells you what x would make FX(x) return 

some value p: F−1(p)=x



Removing Disparate Impact
● Alice and Bob taking it to the next stage!
● Goal: Construct such a set D′ = (X, Y′, C) such that D′ does not have disparate impact in terms of 

protected attribute X.
● Precondition: It is very important to change the data in such a way that predicting the class is still 

possible but how? 
○ We need to preserve the relative per-attribute ordering as follows:

■ Given protected attribute X and a single numerical attribute Y, let Yx= Pr(Y|X = x).
■ Let Fx:Yx→[0,1] be the cumulative distribution function for values y∈Yx.
■ Let F-1

x:[0,1]→Yx be the associated quantile function (i.e. F−1(1/2) is the value of y such that Pr(Y≥y|X 
= x) = 1/2).

■ We will say that Fx ranks the values of Yx.
■ Let Y′ be the repaired version of Y in D′. We will say that D′ strongly preserves rank if for any y∈Yx and 

x∈X, its “repaired” counterpart y′∈ Yx has Fx(y)=Fx(y′).
■ Strongly preserving rank in this way, despite changing the true values of Y, appears to allow Alice’s 

algorithm to continue choosing stronger (higher ranked) applicants over weaker ones.



Full Repair
● We define a “median” distribution A in terms of its quantile function FA

−1:FA
−1(u)=medianx∈X FX

−1(u).
● Lemma: Let A be a distribution such that FA

−1(u)=median x∈X Fx
-1(u). Then A is also the distribution 

minimizing ∑x∈Xd(Yx,C) over all distributions C, where d(·,·) is the earth-mover distance on R.
● Algorithm: Repair algorithm creates Y′, such that for all y∈Yx, the corresponding y′= FA

−1(Fx(y)). 
The resulting D′ changes only Y while the protected attribute and class remain same as in the 
original data, thus preserving the ability to predict the class.

● Blue curve: Distribution of SAT scores for X = female, with μ = 550,σ = 100
● Red curve: Distribution of SAT scores for X = male, with μ = 400, σ = 50
● Black curve: Fully repaired data is the distribution in black, with μ = 475, σ =75
● Male score in 95th percentile: 500→625
● Female score in 95th percentile: 750→625

Repair’s Effect: Consider Y values at some rank z. Probability of the occurrence of a data item with attribute x∈X is the 
same as the probability of the occurrence of x in the full population. This observation gives the intuitive backing for lack of 
predictability of X from Y′ which means lack of DI in D′.



Partial Repair
● Full repair is likely to degrade the ability to classify accurately.
● Partial repair creates a tradeoff between accuracy and fairness of the resulting data.
● Tradeoff can be achieved by simply moving each inverse quantile distribution only part way towards 

the median distribution.
● We create a different distribution Ax for each protected value x∈X and setting y′=FAx

-1(Fx(y)). 
Consider the ordered set of all y at rank u in their respective conditional distributions i.e the set 
U(u)={Fx

−1(u)|x∈X}. We can associate with U the cumulant function UF(u,y)=|{y′≥y|y∈U(u)}|/|U(u)| 
and define the associated quantile function UF−1(u,α)=y where UF(u,y)=α. We can restate the full 
repair algorithm in this formulation as follows: for any (x,y), y′=UF−1(Fx(y),1/2).



Partial Repair: Combinatorial Repair
● Two approaches to partial repair:

○ Combinatorial space: A combinatorial repair
○ Geometric space: A geometric repair

● Combinatorial repair
○ Each item, rather than being moved to the median of its associated distribution, is only moved part of 

the way there, with the amount moved being proportional (in rank) to its distance from the median.
○ Fix an x and consider any pair (x, y). Let r= Fx(y) be the rank of y conditioned on X=x. Suppose that 

in the set U(r) the rank of y is ρ.Then we replace y by y′∈U(r) whose rank in U(r) is ρ′=⌊(1−λ)ρ+λ/2⌋. 
Formally, y′=UF−1(r,ρ′). We call the resulting data set D′λ where λ∈[0,1] is the amount of repair 
desired.

○ Pros: Easy to implement
○ Cons: Not satisfying the property of strong rank preservation (affecting quality of resulting data but 

not fairness properties of the repair). 



Partial Repair: Geometric Repair
● Geometric repair

○ Combinatorial repair does not admit functional interpretation as an optimization of a certain distance function 
i.e. for λ=½ the modified distribution Y′ is not equidistant between the unrepaired distributions and the full 
repair.

○ Geometric repair does have this property! The intuition is that rather than doing a linear interpolation in rank 
space between the original item and the fully repaired value, it does a linear interpolation in the original data 
space.

○ Let FA be the cumulative distribution associated with A. Given a conditional distribution Fx(y), its λ-partial 
repair is given by: F′x

-1(α)=(1−λ)Fx
-1(α)+(λ)FA

-1(α)
○ Linear interpolation allows us to connect this repair to the underlying earthmover distance between repaired 

and unrepaired distributions. In particular for any x, d(Yx,Y′x) = λd(Yx,YA) where YA is the distribution on Y in 
the full repair, and Yx is the λ-partial repair. Moreover, the repair strongly preserves rank (by observing that 
the repair is a linear interpolation between the original data and the full repair).



Fairness/Utility Tradeoff
● Partial repair is desired because increasing fairness may result in loss of utility.

● We make this intuition precise by the definition of Utility:

○ Utility: The utility of a classifier g′λ:Y′→C with respect to some partially repaired data set D′λ 
is: γ(g′λ,Dλ′)=1−BER(g′λ(y′),c)



Auditing Black-box Models
● Now let’s use these algorithmic fairness ideas to study how features influence the the outcome of 

model without knowing how the models work.
● Direct v. Indirect Influence

○ Direct: replace the feature by random noise and test how model accuracy deteriorates.
○ Indirect: Classic case of Redlining! Race has indirect influence via Zip code.

■ Remove Race? Zip code still generates signal!
■ Remove Race and Zip code? Eliminates other task-specific value of Zip code!
■ Perturbing feature?

● Randomly
○ Can also remove useful task-related information in proxy features that would degrade the 

quality of classification
○ Prevents us from cleanly quantifying the relative effect of the feature being perturbed on 

related proxy variables
● Obscuring

○ In a directed and deterministic manner, with minimal change organized around the 
question: “Can we predict the value of feature j from the remaining features?”



Computing Influence
● Let f:X →Y be a classifier, and let (X,Y)={(Xi,yi)} be a set of examples. Let X(i) = (x1i, x2i,..., xni) 

denote the column corresponding to the ith feature.
ε-obscure: We define X\εXi as the ε-obscure version of X with respect to feature Xi if X

(i) cannot be 
predicted from X\εXi.

● Indirect influence: The indirect influence II(i) of a feature i on a classifier f applied to data (X,Y) is 
the difference in accuracy when f is run on X versus when it is run on X\εXi:

II(i)=acc(X,Y,f)−acc(X\εXi,Y,f)

● Gradient Feature Audit (GFA): An algorithm to estimate indirect influence
For each feature:

1) Remove indirect influence of feature on other features in data (How?)
2) Run model on modified test data
3) Calculate influence using II(i)

● GFA works one feature at a time cannot guarantee that all influence can be removed.



That How? Question
● This process differs according to the feature types:

○ O Feature to be removed is Categorical and W feature to be obscured is Numerical
■ Modify the distribution of W by “moving” values so as to mimic the median distribution A. By Doing so O 

is maximally obscured and W minimally changed. The reason is A also minimizes the function 
Σx∈Od(Wx,A) where d(·,·) is the earthmover distance between the distributions using l2 as the base 
metric.

■ Just works if if features to be obscured and removed are numerical and categorical respectively
○ Removing numerical features

■ Remove higher order bits of a number.
■ Bin the numerical feature and use the bins as categorical labels and use previous approach.
■ Bins are chosen using the Freedman-Diaconis rule for choosing histogram bin sizes.

○ Obscuring categorical features
■ Since the procedure relies on being able to compute cumulative density functions for the feature W 

being obscured, if it is categorical, we no longer have an ordered domain on which to define the 
cumulative distributions Fw. 

■ However, we do have a base metric: the exact metric 1 where 1(x,w) = 1↔x = w. 
■ We can therefore define A as before, as the distribution minimizing the function Σx∈Od(Wx,A) with 

respect to metric 1 and A can be found by taking a component-wise median for each value w.



Experiments
● Evaluate certification and repair algorithms’ fairness/utility tradeoff
● On three data sets:

○ Ricci data set:
■ 118 instances
■ Features: Firefighter exam promotion taken, Oral section score, Written section score, Combined score, Race (group Black 

and Hispanic into a single non-white category)
■ Test takers promoted have a score of at least 70%

○ German credit cards
■ 1000 instances
■ 20 attributes, categorized GOOD/BAD, Protected attribute Age (discretized into two categories YOUNG/OLD at age 25)

○ Adult income
■ 48,842 instances
■ 14 attributes, categorized more or less than $50K annually,  Protected attribute Gender

● 21 versions of the data, the original data set plus (λ∈[0,1] at increments of 0.1) 10 partially or fully repaired attribute 
sets for each of the combinatorial and geometric partial repairs.

● Preprocessing: 
○ Remove all protected attributes from Y
○ Remove all unordered categorical features and ordered categories converted to integers 
○ Scale to [0,1]

● 3 Classifiers used for measureing discrimination: LR, SVM, GNB



Experiments
● Repair details

○ The repair procedure requires a ranking of each attribute
○ The numeric and categorical attributes were ordered and then quantiles were used as the ranks.
○ Since the repair assumes that there is a point at each quantile value in each protected class, the quantiles 

were determined in the following way:
■ For each attribute, the protected class with the smallest number of members was determined.
■ This size determined how many quantile buckets to create. 
■ The other protected classes were then appropriately divided into the same number of quantile buckets, 

with the median value in each bucket chosen as a representative value for that quantile. 
● Each quantile value in the fully repaired version is the median of the representative values for 

that quantile. 
● The combinatorial partial repair determines all valid values for an attribute and moves the 

original data part way to the fully repaired data within this space. 
● The geometric repair assumes all numeric values are allowed for the partial repair.



Certification
● We predict the protected attribute from the remaining 

attributes. BER is compared to DI(g) where g:Y→C
● BER threshold ε=1/2−β/8
● (Bottom-right quadrant) No False Positives! few due to 

error in β measure
● (Upper-left quadrant) Some False Negatives!? However, 

certification algorithm guarantees lack of disparate impact over 
any classifier, so these are not false negatives in the traditional 
sense. In fact, when a single data set is considered over all 
classifiers, we see that all such data sets below the BER 
threshold have some classifier that has DI close to or below 
τ=0.8. 



Fairness/Utility Tradeoff
● Each unrepaired data set begins with DI < 0.8 meaning it fails the 

80% rule, and we are able to repair it to a legal value.
● Drop in utility when fully repaired is different in each data set and 

this difference in decay is inherent to the class decisions in the 
data set.

● DI>1: Since DI is calculated with respect to fixed majority and 
minority classes, this happens when the classifier has given a 
good outcome to proportionally more minority than majority class 
members and should be considered unfair to the majority class.



Discussion
● Mathematical definition of disparate impact
● Fairness/Utility tradeoff
● Just considering binary class attributed, how about ethnicity?

○ A more general treatment of joint discrimination among multiple classes

● Multiple proxy attributes
○ Repair each attribute individually



Questions?


